Unit Plan: Math Connections – Numbers, Patterns, and Shapes.

Grade Level: 6

Unit Duration: 7 Weeks

Unit Overview: This unit engages students in discovering the connections between numbers, algebra, and geometry through real-world problems and mathematical reasoning. This unit aims to develop students' understanding of key concepts such as factors and multiples, square and cube numbers, algebraic expressions, and properties of 2D shapes including circles. Students will build fluency in using mathematical language and notation to represent unknowns, relationships, and problem-solving strategies. The unit emphasizes critical and creative thinking through Cambridge's Thinking and Working Mathematically skills. By applying these skills, students explore mathematical patterns, construct and refine expressions, and identify relationships in geometric figures. The goal is for students to be able to analyse and solve practical problems by applying conceptual knowledge. Expected outcomes include:

Confidently identifying factors, multiples

- Confidently identifying factors, multiples, HCF, and LCM of numbers
- Understanding and applying square and cube roots
- Representing situations algebraically and transitioning between word and symbolic forms
- Recognizing and analysing properties of polygons and circles
- Demonstrating mathematical reasoning in collaborative and individual tasks

Big Idea: Mathematical structures and patterns help us understand the world around us and support innovative problem-solving.

Prior Knowledge: Before beginning this unit, students are expected to:

- Understand basic arithmetic operations (addition, subtraction, multiplication, and division)
- Be familiar with place value and comparing whole numbers
- Recognize and work with simple factors and multiples
- Identify and classify basic 2D shapes (e.g., triangles, squares, rectangles)
- Have introductory exposure to mathematical symbols and simple expressions
- Be able to read and interpret simple mathematical instructions

Key Vocabulary

Factor, Multiple, Prime number, Composite number, Highest Common Factor (HCF), Lowest Common Multiple (LCM), Divisibility, Square number, Square root, Cube number, Cube root.

Variable, Constant, Algebraic expression, Formula, Open interval.

Polygon, Regular polygon, Congruent, Side, Angle, Symmetry, Radius, Diameter, Circumference, Chord, Tangent.

Summative Assessment Tasks

Mathematical Investigation - Students investigate a real-world scenario involving factors and multiples.

Problem-solving tasks - Students solve algebraic expressions derived from real-life situations and justify their reasoning.

Geometric Explorations - Students classify polygons, analyse congruency, and identify relationships between circle properties and algebraic concepts.

End of unit assessment

Week	Inquiry questions	Cambridge Learning Objectives	Learning Activities/Experiences	Resources
Week 1: Factors, Multiples, and Divisibility	 What is the difference between a factor and a multiple? How do you find the Highest Common Factor (HCF) of two numbers? How do you determine the Lowest Common Multiple (LCM) of two numbers? How do HCF and LCM help us understand the relationships between numbers? How does understanding factors and multiples help us in solving real-world problems? Are HCF and LCM always useful in real-world applications, or are there cases where they do not matter? 	 7Ni.04 Understand lowest common multiple and highest common factor (numbers less than 100). 7Ni.05 Use tests of divisibility to find factors of numbers greater than 100. 	 TWM Activities: <i>Specialising:</i>_Students choose specific numbers and test their divisibility by different rules. They identify factor pairs and apply their knowledge to find HCF and LCM for specific cases. <i>Generalising:</i> After working with multiple examples of factorization and multiples, students recognize patterns in how HCF and LCM relate to number properties. <i>Conjecturing:</i> Students form mathematical hypotheses, such as predicting whether a number is prime based on divisibility rules. <i>Convincing:</i> Students justify their solutions by explaining factorization steps and divisibility tests. 	Number cards and dice (for factor, multiple, and divisibility games) Digital tools: Khan Academy Quizlet Kahoot! or Quizziz

Formative Assessments & Thinking and Working Mathematically (TWM) Activities

• Is it more important to understand	Formative Tasks:	
how to find HCF and LCM or when		
to apply them in real life?	1) Divisibility Rule Investigation: Students test	
	numbers greater than 100 using divisibility	
	rules and explain why certain numbers are	
	divisible by specific factors.	
	2) Find the Factors: Students list factors of	
	given numbers and identify common factors	
	between two numbers.	
	3) Factor Pairs Matching: Provide students	
	with numbers and ask them to match them to	
	their correct factor pairs.	
	4) HCF Challenge: Students find the HCF of	
	number pairs using both factor listing and	
	prime factorization.	
	5) LCM Calculation Race: Students work in	
	groups to calculate the LCM of different	
	number pairs and compare the methods	
	(listing and prime factorization).	
	6) Venn Diagram Task: Students use Venn	
	diagrams to compare the factors of two	
	numbers and visually determine the HCF and	
	LCM.	
	7) Error Spotting: Provide incorrect solutions	
	for HCF or LCM problems; students must	
	identify and correct the mistakes.	
	8) Real-World Applications: Students apply	
	the highest common factor (HCF) and least	
	common multiple (LCM) to solve practical	
	problems such as scheduling events and	
	designing product packaging.	

Week 2:	• What is the difference between	7Ni.06 Understand	 9) Card Sorting Activity: Students sort numbers based on their factors, multiples, and common divisibility characteristics. 10) Exit Ticket: Students write a real-life scenario where LCM or HCF would be useful and explain their reasoning. TWM Activities: 	Square and cube
Squares and Cube numbers	 squaring and finding a square root? What is the difference between cubing and finding a cube root? How do you determine if a number is a perfect square or a perfect 	the relationship between squares and corresponding square roots, cubes and corresponding cube roots.	 <i>Generalising</i>: Students observe patterns in square numbers and cube numbers, leading to an understanding of square and cube roots. <i>Characterising</i>: Students describe properties of numbers, such as what makes a number a square number or a cube number. <i>Classifying</i>: Students classify numbers based on their properties, such as prime, composite, square, or cube numbers. Formative Tasks: Matching Activity: Students match square numbers with their corresponding square roots and cube numbers with their cube roots. Number Patterns Exploration: Students examine and describe patterns in square and cube numbers to identify relationships. Real-World Problem Solving: Students apply their understanding of squares and cubes by solving real-world problems. For example, calculating areas of square tiles or volume of cube-shaped objects. Error Analysis: Students identify and correct mistakes incorrect calculations of square roots or cube roots. 	blocks (for modelling square and cube numbers) Digital tools: Khan Academy Quizlet Kahoot! or Quizziz

			 Visual Representation Task: Students create a visual model. For example, arrays or cube diagrams, to represent square and cube numbers. Card Sort Activity: Given a set of numbers, students sort them into categories - perfect squares, perfect cubes, both, or neither. True or False Statements: Provide students with statements about square and cube numbers and ask them to justify their answers. Exit Ticket: At the end of class, students write one real-world application of square and cube roots. Peer Teaching: Students work in pairs to explain the concept of square and cube roots to each other using examples and models. 	
Week 3:	• What is a variable?	7Ae.01 Understand	TWM Activities:	Algebra tiles (to
Writing	• What is a constant?	that letters can be	Conjecturing: Students form algebraic	visualize
algebraic	• How are letters used to represent	used to represent	expressions from word problems.	expressions and
expressions	unknown numbers in algebra?How can you translate a word	unknown numbers, variables or constants.	• <i>Generalising</i> : Students identify common structures in expressions.	variables)
	• How can you translate a word problem into an algebraic	variables of constants.	surdentes in expressions.	
	expression?	7Ae.04 Understand	Formative Tasks:	
	• Is algebra necessary for everyday	that a situation can be	1. Identifying Variables: Students highlight	Digital tools:
	life, or is it only useful in specific	represented either in	and identify variables in given algebraic	Khan Academy
	professions?	words or as an	expressions and equations.	Quizlet
	• Can all mathematical situations be	algebraic expression,	2. Matching Activity: Students match algebraic	Kahoot! or
	effectively represented using algebra?	and move between the two	expressions with their corresponding word descriptions.	Quizziz
	argeora:	representations		

	Is it easier to solve a problem when it is written in words or as an algebraic expression?		 Creating Word Problems: Students write real-world word problems that they can represent with algebraic expressions. Expression Sorting: Given a list of expressions and formulas, students classify them based on whether they represent a single operation or a multi-step situation. Fill in the Blanks: Students complete missing parts of algebraic expressions and justify their choices. Translating Between Representations: Students take a given real-world scenario and write it in words, symbols, and an algebraic expression. Error Analysis: Provide incorrect algebraic translations of word problems and have students identify and correct mistakes. Algebra Scavenger Hunt: Students find examples in everyday life where they can use algebraic representations such as in pricing discounts and speed-distance-time relationships. Exit Ticket: Students explain in one sentence why letters are used to represent unknown values in algebra. Peer Teaching: Students create a mini-lesson for a partner, explaining how to translate a word problem into an algebraic expression. 	
Week 4: Creating formula and	• What is a formula, and how is it different from an algebraic expression?	7Ae.05 Understand that a situation can be represented either in	 TWM Activities Convincing: Students justifying algebraic solutions. 	Digital tools: Khan Academy Quizlet

algebraic	• What is an open interval, and how is	words or as a formula	• Conjecturing: In algebra, they predict the	Kahoot! or
inequalities		(single operation), and move between	effect of changing a variable in an expression.	Quizziz
	• How can letters be used to express t	the two	Formative Tasks	
	an open interval in mathematical	representations	1. Formula Translation Exercise: Students are	
	reasoning?	-	given word problems and must write the	
	• How do we convert word	7Ae.07 Understand	corresponding formulas using a single	
	8	that letters can	operation.	
		represent an open	2. Fill in the Blanks: Provide formulas with	
		interval (one term)	missing variables or numbers, and let students	
	algebraic formulas?		complete them correctly.	
	• Are formulas always the best way to		3. Real-World Applications: Present scenarios	
	represent a real-world situation, or		in which students must create formulas, for	
	are there cases where words are		example calculating discounts, speed, and	
	more effective?Should students focus more on		area.	
	Should students focus more on memorizing formulas or		4. Open Interval Exploration: Students investigate open intervals on a number line	
	understanding how to derive them?		and express them using algebraic notation.	
	 Can every real-world scenario be 		5. Matching Game: Students match given	
	accurately represented using algebraic formulas?		formulas to real-world situations described in words.	
			6. Sorting Activity: Students sort different	
			mathematical representations into categories:	
			words, expressions, formulas, and equations.	
			7. Writing Challenge: Students create their	
			formulas to represent real-life situations.	
			8. Exit Ticket: Students explain how moving	
			between word statements and formulas helps	
			simplify problem-solving.	
			9. Peer Teaching: Students teach each other	
			how to convert verbal descriptions into	
			algebraic formulas.	

			10. Error Analysis: Provide common mistakes in translating word problems into formulas, and students must identify and correct them.	
Week 5: Properties of 2D shapes and congruence	 What are the properties of regular polygons? How do you identify and classify regular polygons? What is symmetry, and how is it related to regular polygons? How can you determine whether two shapes are congruent? What are corresponding sides and angles in congruent shapes? How does the number of sides in a polygon affect its angles and symmetry? Why are congruent shapes important in mathematics and real-world applications? What strategies can be used to prove that two shapes are congruent? In what ways do regular polygons appear in nature, architecture, and design? Is symmetry necessary for a shape to be considered 'beautiful' or 'balanced'? Are congruent shapes always identical in appearance? 	 7Gg.01 Identify, describe and sketch regular polygons, including reference to sides, angles and symmetrical properties. 7Gg.02 Understand that if two 2D shapes are congruent, corresponding sides and angles are equal. 	 TWM Activities <i>Characterising</i>: Students identify key properties of polygons. and circles and their defining characteristics. <i>Classifying</i>: Students classify polygons by the number of sides and symmetry properties. <i>Specialising</i>: Students verify whether given shapes are congruent by checking corresponding sides and angles. <i>Conjecturing</i>: Students explore geometric relationships (e.g., If two shapes have equal corresponding sides, are they always congruent?). Formative Tasks Polygon Sorting Activity – Provide students with a set of 2D shapes and ask them to sort them into regular and irregular polygons. Have them justify their classifications. Polygon Scavenger Hunt – Ask students to find examples of regular polygons in their environment (classroom, school, or images) and describe their properties in a short reflection. Guided Drawing and Labeling – Have students draw different regular polygons with rulers and protractors, then label sides, angles, and lines of symmetry. 	Cut-out shapes and manipulatives (for classifying polygons and exploring congruency) Digital tools: Khan Academy Quizlet Kahoot! or Quizziz

4. Polygon Investigation with GeoGebra (or
Paper Folding) – Students use GeoGebra or
fold paper to explore lines of symmetry and
angle measurements in regular polygons.
5. Card Sort: Name, Properties, and Sketch –
Provide students with three sets of cards: (1)
polygon names, (2) sketches, and (3)
properties. Students match the correct name,
sketch, and properties for each polygon.
6. Polygon riddle creation – Students write
descriptions of different regular polygons
(e.g., "I have all equal sides and four right
angles. What am I?") and swap with a partner
to solve.
7. Find the Mistake – Give students a diagram
of polygons with incorrectly labelled angles,
sides, or symmetry lines, and ask them to
identify and correct the errors.
8. Exit Ticket – Describe a Polygon – At the
end of the lesson, ask students to describe a
regular polygon of their choice in a few
sentences, including properties like side
lengths, angles, and symmetry.
9. Matching congruent shapes – Provide
students with a set of shape pairs, some
congruent and some not. Have them identify
the congruent pairs and explain their
reasoning.
10. Congruence Cut-Outs – Give students cut-
out shapes and ask them to match congruent
pairs by superimposing them or folding them
over one another.

	11. Error Analysis Task – Provide a student	
	"work sample" where someone incorrectly	
	identifies non-congruent shapes as congruent.	
	Ask students to critique and explain the	
	mistake.	
	12. Congruence Sorting Activity – Give	
	students a mix of shape pairs and have them	
	sort them into "Congruent" and "Not	
	Congruent," explaining their reasoning.	
	13. Identify Corresponding Parts – Give	
	students two congruent shapes with missing	
	labels and ask them to correctly identify	
	corresponding angles and sides.	
	14. Find the Congruent Shape in a Pattern –	
	Provide a tiling or tessellation pattern and ask	
	students to identify pairs of congruent shapes	
	within it.	
	15. Congruence Challenge (Real-World	
	Connection) – Ask students to find examples	
	of congruent shapes in real life (e.g., floor	
	tiles, window panes, road signs) and explain	
	why they are congruent.	
	16. Mini-Investigation with rulers and	
	protractors – Have students measure and	
	compare the sides and angles of two given	
	shapes to determine whether they are	
	congruent.	
	17. Exit Ticket – Define and Explain – Ask	
	students to write a one-sentence definition of	
	congruence and provide a small sketch as an	
	example.	

Week 6: Circle properties	 What are the main parts of a circle? How are the radius, diameter, and circumference related? How does knowing the parts of a circle help us solve real-world problems? 	7Gg.03 Know the parts of a Circle	 TWM Activities <i>Classifying</i>: Students sort and compare different circle properties. <i>Characterising</i>: Students identify key properties of circles. 	Circle models (with labeled radius, diameter, chord, tangent)
	 Why is the ratio of a circle's circumference to its diameter always the same? Is the concept of π (pi) one of the most important discoveries in mathematics? 		 Formative Tasks Label the Circle – Provide students with a blank diagram of a circle and ask them to label key parts (radius, diameter, circumference, chord, arc, sector, etc.). Circle Parts Cut-and-Paste – Give students a list of definitions and have them match them to the correct terms by pasting them onto a blank circle diagram. Find the Mistake – Provide a diagram where some parts are incorrectly labelled. Students must identify and correct the mistakes. Circle Scavenger Hunt – Ask students to find real-world examples of circles and identify different parts (e.g., bicycle wheels, coins, plates). Construct and Compare – Have students draw different-sized circles and compare the relationships between the radius, diameter, and circumference. Guess the Part – Describe a circle part without naming it (e.g., "This is twice the radius" → Answer: Diameter), and have students guess the correct term. 	Digital tools: Khan Academy Quizlet Kahoot! or Quizziz

		 Kahoot or Quizizz Game – Create an interactive quiz where students identify and describe circle parts. GeoGebra Exploration – Let students use GeoGebra or other geometry software to explore and manipulate circle properties dynamically. Drag-and-Drop Activity (Digital Find the Missing Measure – Give students one measurement (e.g., radius = 5 cm) and ask them to find the diameter or another related part. Circle Puzzle – Provide a partially labeled circle diagram and have students deduce the missing terms or values. Exit Ticket – Explain in Your Own Words – Ask students to write a brief explanation of one circle part and why it is important. Real-Life Application Task – Ask students to explain how understanding circles is useful in daily life (e.g., designing wheels, round tables, or clocks). 	
Week 7: Review and Summative Tasks	Numbers, Algebra, and Geometry•Sourcepts in the unit1	<i>Improving</i> : Students refine problem-solving strategies. After solving problems, students reflect on their methods and consider if there	Colored markers and chart paper (for student-led posters and group tasks)

		Digital tools for
		visualization and
		interactive
		problem-solving.